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Abstract— Dynamic single photon emission computed tomog-
raphy (SPECT) data acquisition and quantitative kinetic data
analysis provide unique information that can enable improved
discrimination between healthy and diseased tissue, compared
to conventional static imaging. Previously, we modeled time
courses of activity within segmented SPECT volumes of interest
and developed algorithms to estimate kinetic model parameters
directly from dynamic projection data. We now propose two
methods for modeling and estimating scatter jointly with tracer
kinetic models. The goal is to reduce bias in kinetic parameter
estimates by properly accounting for scatter. These methods
exploit the fact that the scatter distribution from a volume of
interest is spatially smooth and has the same temporal kinetics
as unscattered events from the volume. The first method treats
scattered events as if they originate from scatter sites distributed
in image space. For each volume of interest, the distribution
of scatter sites is modeled with a smooth spatial function and
events from this effective scatter source distribution (ESSD) are
forward-projected along with unscattered events from the volume.
Thus, the projector only needs to model non-scatter effects. The
second method bypasses modeling an ESSD in image space and
simply models the spatial projection of scatter to be a smooth
function in projection space. Computer simulations of a dynamic
99mTc-teboroxime cardiac SPECT scan show that unscattered and
scattered events from the blood pool, myocardium, and liver have
distinct spatiotemporal signatures and that it is feasible to jointly
estimate scatter amplitudes and time-activity curves for volumes
of interest directly from projection data. This suggests that joint
estimation of scatter, blood input function, and compartmental
model parameters is a well-posed problem and can lead to reduced
bias in kinetic parameter estimates.

I. I NTRODUCTION

DYNAMIC single photon emission computed tomography
(SPECT) data acquisition and quantitative kinetic data

analysis provide unique information that can enable improved
discrimination between healthy and diseased tissue, compared
to conventional static imaging [1], [2]. For example, in a
dynamic cardiac study one can identify unwanted scatter from
the liver because the scattered liver activity has the same
temporal kinetics as unscattered liver activity. In this work,
we present methods for modeling and estimating scatter jointly
with tracer kinetic models. The goal is to reduce bias in kinetic
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parameter estimates by properly accounting for scatter [3].
These methods exploit the fact that the scatter distribution from
a volume of interest is spatially smooth and has the same
temporal kinetics as unscattered activity from the volume.

II. SPATIOTEMPORAL MODELS

Previously, we modeled time courses of radiotracer activity
within segmented SPECT volumes of interest, and developed
algorithms to estimate kinetic model parameters and their
statistical uncertainties directly from dynamic cardiac SPECT
projection data [4]–[7]. The time-activity curve for segmented
volumem is denoted byAm(t) and can be modeled with use
of a compartmental model or temporal B-spline basis functions.
The detected count rate at timet for detector elementi, Pi(t),
is modeled as

Pi(t) =
M∑

m=1

Um
i (t)Am(t), (1)

whereUm
i (t) is the spatial projection of a unit concentration of

static activity in volumem, andM is the number of segmented
volumes encompassing the projected field of view. The spatial
projection function,Um

i (t), models physical effects such as
attenuation, depth-dependent point response, and scatter, and
is time-varying as a result of gantry motion. For a periodic
(e.g., multi-rotation circular) orbit with periodT , one has
Um

i (t + T ) = Um
i (t).

A. Modeling Scatter in the Projector

If one has an attenuation map and a projector that models
scatter (and other physical effects), then spatial projection
functions,Um

i (t), can be calculated and time-activity curves,
Am(t), can be estimated directly from projection data with use
of (1). Generally, it is computationally intensive to calculate
spatial projection functions that contain scatter as determined
by Monte Carlo simulation [8] or analytic ray-driven algo-
rithms [9].

As an alternative, we propose two simpler methods that
model and estimate scatter based on the fact that the scatter
distribution from a volume of interest is spatially smooth and
has the same temporal kinetics as unscattered activity from the
volume.

B. Modeling Smoothness of Scatter in Image Space

The first proposed method builds on work by Frey and
Tsui [10], in which scattered events are treated as if they
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originate from scatter sites distributed in image space. For each
segmented volume of interest, we model the distribution of
scatter sites with a smooth spatial function, and forward-project
events from this effective scatter source distribution (ESSD)
along with unscattered events from the volume of interest. Thus,
the projection operator (denoted below byFi) only needs to
model other physical effects such as attenuation and depth-
dependent point response.

The dynamic projection data model (1) can be rewritten as

Pi(t) =
M∑

m=1

[Dm
i (t) + Sm

i (t)]Am(t), (2)

whereDm
i (t) andSm

i (t) are spatial projections of unscattered
and scattered static activity, respectively. Time variation of
Dm

i (t) and Sm
i (t) is due only to gantry motion; dynamics of

tracer uptake and washout are modeled byAm(t).
The projection of unscattered events can be written as the

spatial integration

Dm
i (t) =

∫
X
Fi(x, t)Dm(x) dx, (3)

wherex is a point in image spaceX , Dm(x) is the indicator
function for volumem, andFi(x, t) is the projection operator
that maps image space to detector elementi for the gantry
position at timet.

The spatial projection of scattered events is modeled as

Sm
i (t) =

∫
X
Fi(x, t)

[
Qm∑
q=1

bqmBqm(x)

]
σm

i (x, t) dx, (4)

whereBqm(x) are spatial basis functions that model the ESSD
for volume m, bqm are linear coefficients, andQm is the
number of basis functions. The relative fraction of events
that originate in volumem and scatter from pointx in the
direction of detector elementi is denoted byσm

i (x, t), which
can be calculated with use of the Klein-Nishina formula [11].
Rearranging (4) yields

Sm
i (t) =

Qm∑
q=1

bqmBqm
i (t), (5)

whereBqm
i (t) =

∫
X Fi(x, t)Bqm(x)σm

i (x, t) dx.
Thus, the spatial projection of scattered events can be mod-

eled as a linear combination of projections of smooth functions.
We anticipate that nonuniform rational B-splines (NURBS) [12]
will be suitable basis functions for modeling the somewhat
peaked centers and long tails of the ESSD.

C. Modeling Smoothness of Scatter in Projection Space

The second proposed method bypasses modeling an ESSD in
image space and simply models the spatial projection of scatter
to be a linear combination of smooth functions in projection
space:

Sm
i (t) =

Rm∑
r=1

crmCrm
i (t), (6)

whereCrm
i (t) are the basis functions (e.g., NURBS),crm are

linear coefficients, andRm is the number of basis functions.

III. C OMPUTERSIMULATIONS

Computer simulations were performed to test the feasibility
of jointly estimating scatter amplitudes and time-activity curves
for volumes of interest directly from projection data. Simulated
spatial distributions were obtained with use of the idealized
single-slice emission phantom shown in Fig. 1. The phantom
containedM = 4 circular volumes of interest: blood pool, left
ventricular myocardium, liver, and background tissue. Each
volume contained spatially uniform activity.

Fig. 2 shows simulated time-activity curves,Am(t), which
mimicked the kinetics of99mTc-teboroxime [13], [2]. The blood
curve was used as the input function for one-compartment
models that generated curves for the myocardium and liver. The
background tissue curve was proportional to the blood curve.

The simulated 15 min data acquisition with a single-detector
system consisted of one 360◦ rotation per minute, 120 pro-
jection angles per rotation,I = 50 parallel projection rays per
angle, andL = 1800 time intervals. Projection bins were 6 mm
× 6 mm. Uniform attenuation and scatter at 140 keV were
simulated with use of a ray-driven projector and analytic line
integrals [14], [15], [9]. Depth-dependent collimator response
was not simulated. The blood input amplitude was adjusted so
that 1M, 500k, or 250k events were detected.

Time-activity curves were estimated directly from projection
data with use of the temporal model

Am(t) =
N∑

n=1

amnV n(t), (7)

where V n(t) are quadratic B-spline temporal basis functions
(Fig. 3), amn are model coefficients for volume of interestm,
andN = 16 is the number of basis functions.

Fig. 1. Emission phantom composed of liver (bright circle), left ventricular
myocardium, blood pool, and background tissue.
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Fig. 2. Simulated time-activity curves,Am(t), for 99mTc-teboroxime.
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Fig. 3. Piecewise quadratic B-spline temporal basis functions,V n(t), used
to model time-activity curves. The thirteenth spline is shown as a solid curve.

The projection space distribution of scatter from volume of
interest m was assumed to have known shape,Sm

i (t), but
unknown amplitude,cm. Thus, the dynamic data model (2)
was expressed as

Pi(t) =
M∑

m=1

[Dm
i (t) + cmSm

i (t)]
N∑

n=1

amnV n(t). (8)

The model for the acquired projection data was obtained by
integrating (8) over theL = 1800 time intervals that spanned
the data acquisition:

pil =
∫ tl

tl−1

Pi(τ)dτ. (9)

The spline time-activity curve coefficients,amn, and scatter am-
plitudes,cm, were jointly estimated with use of the Levenberg-
Marquardt algorithm [16] to minimize the sum of squared

differences between the simulated and modeled projections:

χ2 =
I∑

i=1

L∑
l=1

(p∗il − pil)2

wherep∗il were the simulated projections.

IV. RESULTS

Fig. 4 shows spatial projection functions for unscattered
events,Dm

i (t), and scattered events,Sm
i (t), for one period

(T = 1 min). As expected, projections of the blood pool and
myocardium overlapped extensively (Fig. 4a–d), and the liver
had a spatial signature (Fig. 4e,f) that distinguished it clearly
from the blood pool and myocardium. Of course, there was
considerable overlap between projections of the background
tissue (Fig. 4g,h) and the other volumes.

Fig. 5 shows unscattered and scattered components of dy-
namic projection data, i.e.,Dm

i (t)Am(t) and Sm
i (t)Am(t),

for the first 10 min. The blood pool, myocardium, and liver
had relatively distinct spatiotemporal signatures (Fig. 5a–f).
However, projections of the background tissue (Fig. 5g,h) and
blood pool overlapped temporally as well as spatially, because
their time-activity curves had the same shape (Fig. 2).

Dynamic data acquisition and quantitative kinetic data anal-
ysis enabled joint estimation of scatter amplitudes and time-
activity curves by exploiting the fact that the scatter distribution
from a volume of interest has the same temporal kinetics
as unscattered activity from the volume [equation (8)]. For
noiseless data, time-activity curve estimates closely fit the
simulated curves (Table I) and scatter amplitude estimates
ranged between 0.988–1.001, compared to the simulated value
of 1.

For 500k noisy events, noise-to-signal ratios (NSRs) for the
time-activity curves were 0.9–16% when scatter amplitudes
were known, and worsened to 1.1–25% when scatter amplitudes
were jointly estimated (Table I). NSR changed by a factor
of ∼√2 when the number of events changed by a factor of 2, as
expected. The blood pool time-activity curve had the worst NSR
because of the large number of spatially overlapping events
from the background tissue, which had the same kinetics as
blood.

Reducing the background tissue amplitude by a factor of 2,
while maintaining overall counts at 500k, improved blood NSR
by a factor of 1.27 when jointly estimating scatter (Table II).
We anticipate that the blood NSR will further improve when
jointly estimating compartmental models for the myocardium
and liver as proposed in [7], because of the additional temporal
modeling constraint that the myocardial and liver time-activity
curves are obtained by convolution with the blood curve.

V. FUTURE DIRECTIONS

We are working to fully implement the two proposed scatter
models given by (5) and (6), and to use the models in con-
junction with the dynamic projection data model given by (2).
Methods described in [7] are being extended so that scatter
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Fig. 4. One period of spatial projection functions. Un-
scattered events,Dm

i (t), are shown for (a) blood pool,
(c) myocardium, (e) liver, and (g) background tissue. Scat-
tered events,Sm

i (t), are shown for (b) blood pool, (d) my-
ocardium, (f) liver, and (h) background tissue. Numbers
labeling color bars reflect relative geometric sensitivity.
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Fig. 5. Unscattered and scattered components of simulated noiseless, attenuated dynamic
99mTc-teboroxime projection data. Dynamic unscattered events,Dm

i (t)Am(t), are shown for
(a) blood pool, (c) myocardium, (e) liver, and (g) background tissue. Dynamic scattered events,
Sm

i (t)Am(t), are shown for (b) blood pool, (d) myocardium, (f) liver, and (h) background tissue.
Numbers labeling color bars are expected numbers of events in sinogram bins for a dynamic
study in which 500,000 total events are detected.

parameters,brm in (5) or crm in (6), can be jointly estimated
with linear and nonlinear kinetic parameters for time-activity
curves,Am(t) in (2). We will then compare kinetic parameter
estimates obtained with the proposed scatter models and a
scatter model determined by Monte Carlo simulation.
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TABLE I

ROOT MEAN SQUARE(RMS) ERRORS FOR TIME-ACTIVITY CURVES ESTIMATED FROM NOISELESS DATA, AND EFFECTS OF JOINT ESTIMATION OF SCATTER

AMPLITUDES ON NOISE-TO-SIGNAL RATIOS (NSRS) FOR TIME-ACTIVITY CURVES ESTIMATED FROM 1M, 500K, OR 250K NOISY EVENTS. THE

BACKGROUND TISSUE TIME-ACTIVITY CURVE AMPLITUDE WAS 0.2 TIMES THAT OF THE BLOOD POOL(FIG. 2). RMSERROR WAS CALCULATED AS THE

RMS DIFFERENCE BETWEEN THE ESTIMATED AND SIMULATED TIME-ACTIVITY CURVES, NORMALIZED BY THE RMS VALUE FOR THE SIMULATED CURVE

AND EXPRESSED AS A PERCENTAGE. NSRWAS CALCULATED AS THE ROOT MEAN VALUE (ACROSS TIME) OF EXPECTED SQUARED DIFFERENCES BETWEEN

TIME-ACTIVITY CURVES ESTIMATED FROM NOISY AND NOISELESS DATA, NORMALIZED BY THE RMS VALUE FOR THE NOISELESS CURVE AND EXPRESSED

AS A PERCENTAGE[6].
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TABLE II
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